27,418 research outputs found

    Energy-efficiency improvements for optical access

    Get PDF
    This article discusses novel approaches to improve energy efficiency of different optical access technologies, including time division multiplexing passive optical network (TDM-PON), time and wavelength division multiplexing PON (TWDM-PON), point-to-point (PTP) access network, wavelength division multiplexing PON (WDM-PON), and orthogonal frequency division multiple access PON (OFDMA-PON). These approaches include cyclic sleep mode, energy-efficient bit interleaving protocol, power reduction at component level, or frequency band selection. Depending on the target optical access technology, one or a combination of different approaches can be applied

    Multiclass scheduling algorithms for the DAVID metro network

    Get PDF
    Abstract—The data and voice integration over dense wavelength-division-multiplexing (DAVID) project proposes a metro network architecture based on several wavelength-division-multiplexing (WDM) rings interconnected via a bufferless optical switch called Hub. The Hub provides a programmable interconnection among rings on the basis of the outcome of a scheduling algorithm. Nodes connected to rings groom traffic from Internet protocol routers and Ethernet switches and share ring resources. In this paper, we address the problem of designing efficient centralized scheduling algorithms for supporting multiclass traffic services in the DAVID metro network. Two traffic classes are considered: a best-effort class, and a high-priority class with bandwidth guarantees. We define the multiclass scheduling problem at the Hub considering two different node architectures: a simpler one that relies on a complete separation between transmission and reception resources (i.e., WDM channels) and a more complex one in which nodes fully share transmission and reception channels using an erasure stage to drop received packets, thereby allowing wavelength reuse. We propose both optimum and heuristic solutions, and evaluate their performance by simulation, showing that heuristic solutions exhibit a behavior very close to the optimum solution. Index Terms—Data and voice integration over dense wavelength-division multiplexing (DAVID), metropolitan area network, multiclass scheduling, optical ring, wavelength-division multiplexing (WDM). I

    High performance architecture design for large scale fibre-optic sensor arrays using distributed EDFAs and hybrid TDM/DWDM

    No full text
    A distributed amplified dense wavelength division multiplexing (DWDM) array architecture is presented for interferometric fibre optic sensor array systems. This architecture employs a distributed erbium doped fibre amplifier (EDFA) scheme to decrease the array insertion loss, and employs time division multiplexing (TDM) at each wavelength to increase the number of sensors that can be supported. The first experimental demonstration of this system is reported including results which show the potential for multiplexing and interrogating up to 4096 sensors using a single telemetry fibre pair with good system performance. The number can be increased to 8192 by using dual pump sources

    A Coaxially Integrated Photonic Orbital Angular Momentum Beam Multiplexer

    Get PDF
    We demonstrate an integrated photonic orbital angular momentum beam multiplexer consisting of four nested arc waveguide gratings. Well-defined OAM mode emissions over wide bandwidth of 1-nm enables simultaneous wavelength division multiplexing and OAM multiplexing

    Fiber optics wavelength division multiplexing(components)

    Get PDF
    The long term objectives are to develop optical multiplexers/demultiplexers, different wavelength and modulation stable semiconductor lasers and high data rate transceivers, as well as to test and evaluate fiber optic networks applicable to the Space Station. Progress in each of the above areas is briefly discussed

    Multimode fiber optic wavelength division multiplexing

    Get PDF
    Optical wavelength division multiplexing (WDM) systems, with signals transmitted on different wavelengths through a single optical fiber, can have increased bandwidth and fault isolation properties over single wavelength optical systems. Two WDM system designs that might be used with multimode fibers are considered and a general description of the components which could be used to implement the system are given. The components described are sources, multiplexers, demultiplexers, and detectors. Emphasis is given to the demultiplexer technique which is the major developmental component in the WDM system

    Nonlinear Frequency-Division Multiplexing in the Focusing Regime

    Get PDF
    Achievable rates of the nonlinear frequency-division multiplexing (NFDM) and wavelength-division multiplexing (WDM) subject to the same power and bandwidth constraints are computed as a function of transmit power in the standard single-mode fiber. NFDM achieves higher rates than WDM.Comment: Invited paper to be presented at The Optical Fiber Communications Conference and Exposition (OFC), March 201

    Nanosecond channel-switching exact optical frequency synthesizer using an optical injection phase-locked loop (OIPLL)

    Get PDF
    Experimental results are reported on an optical frequency synthesizer for use in dynamic dense wavelength-division-multiplexing networks, based on a tuneable laser in an optical injection phase-locked loop for rapid wavelength locking. The source combines high stability (50 dB), narrow linewidth (10 MHz), and fast wavelength switching (<10 ns)

    100G shortwave wavelength division multiplexing solutions for multimode fiber data links

    Get PDF
    We investigate an alternative 100G solution for optical short-range data center links. The presented solution adopts wavelength division multiplexing technology to transmit four channels of 25G over a multimode fiber. A comparative performance analysis of the wavelength-grid selection for the wavelength division multiplexing data link is reported. The analysis includes transmissions over standard optical multimode fiber (OM): OM2, OM3 and OM4

    Wavelength switched hybrid TDMA/WDM (TWDM) PON: a flexible next-generation optical access solution

    Get PDF
    In this paper, we propose the system concepts of a next-generation wavelength switched hybrid time division multiple access and wavelength division multiplexing (TWDM) passive optical network (PON) architecture. In this architecture, wavelength selective switches (WSSs) are used at the remote node to improve flexibility, data security and power budget compared to other TWDM-PON variants. We map the proposed architecture to the requirements of next-generation optical access networks in a 2020 perspective. Finally, we benchmark the proposed architecture with other proposed TWDM-PON solutions
    • 

    corecore